

SOLAR-Eclipse computational tools for genetic and mega-genetic analysis

Introduction

- Imaging genetics combines modern statistical genetics approaches with quantitative neuroimaging-derived phenotypes
- The unique nature of neuroimaging phenotypes presents certain challenge in using existing statistical genetics software

Aims

Develop imaging genetics tools that will

- Accept neuroimaging data formats
- Implement standard genetic analyses Heritability Genetic correlation QTL GWAS
- Accept populations of random complexity
- Capable of performing Meta and Mega Genetic analysis **Methods**

Sequential Oligogenic Linkage Analysis Routines (SOLAR) is the basis for the new software – SOLAR-Eclipse (SE).

SE development in-progress New data type module for reading NIFTI and GIFTI JNI interfaces for easy pipeline integration Performance optimization for parallel processing Mega-genetic analysis capability

🔳 💽 heron :					\odot
File Edit View	Scrollback Bookmarks Setti	ings Help			
änter help for help,	exit to exit, doc to browse docu	umentation.			
			0XEL_31_108_104 V0XEL_31_109_103	8 V0XEL_31_109_104 V0XEL_31_110_103 V	0XEL_31_111_102 V0XE
solar> trait VOXEL_3 solar> polygen	1_107_105				
 Maximize sporadic 	model	·····			
*** Loglikelihoo	d of sporadic model is -6771.1695	547			
 Maximize polygeni 	c model	·····			
	d of polygenic model is -6771.169 enic model is 0.0000000	547			
*** Comparing po	significance of H2r lygenic and sporadic models , deg = 1, p = 0.5000000				
•	Summary of Results	•••••••••••••••••••••••••••••••••••••••			
Pedigree: Phenotypes: Trait:	safs_gwa_ped.out out_0.csv V0XEL_31_107_105 Individual	ls: 814			
	H2r is 0.0000000 p = 0.5000	0000 (Not Significant)			
Summary resu Loglikelihoo Best model i Final models	and models are in diractory VOXE lts are in VOXEL_31_107_105/polyg ds and chi's are in VOXEL_31_107_ s named poly and nullO (currently are named poly, spor	genic.out _105/polygenic.logs.out / loaded)			
Residual Kur solar> 📕	tosis is 0.4547, within normal ra	Inge			
	10.0.4.101 :	peterk : R	🕅 10.0.4.101 ; petr	10.0.4.101 ;	

Figure 1. Solar interface

• [R]-like visual interface with support for shell and TCL scripts • SE new phenotype file format was created to accommodate binary voxel-and-vertex wise data types (Figure 2) • New command lines were developed to accommodate for parallel processing of binary phenotypes using mask command

(Figure 3).

Different pedigrees are combined into a superfamily

dataset.

Heritability estimates for each population and a combined

pedigree are calculated to test significance of populationspecific difference and the combined significance of heritability or fixed effects.

2)

- solution

Peter Kochunov, Neda Jahanshad, Charles Peterson, Thomas Nichols, Bennett Landman, Paul Thompson, David Glahn and John Blangero.

Maryland Psychiatric Research Center. University of Maryland School of Medicine Baltimore

Progress

Results

• Mega-genetic analysis can be performed by combining diverse sample into a single pedigree

- Class variable is added to identify separate pedigrees Samples for which raw data is available can be combined into a single pedigree.
 - Sporadic effects are calculated individually for each sample. Inverse normal transformation is used to Z-normalize each

Solar phenotype files read binary traits (Figure

Mask command provides for parallelization Limitations

•Memory is a limiting factor for large studies •Memory chunking is supported as ad-hoc

ID	Age	Sex	DTIFA: NIFTI		
A00001	21	Μ	Gobs_fa.nii.gz :1		
A00002	34	F	Gobs_fa.nii.gz :3		
A00003	24	Μ	Gobs_fa.nii.gz :2		

Figure 2. Example for the new phenotype file CSV file format. Semicolon is used to provide identification of the file type in the header and the sequence of the volume/surface in the combined file.

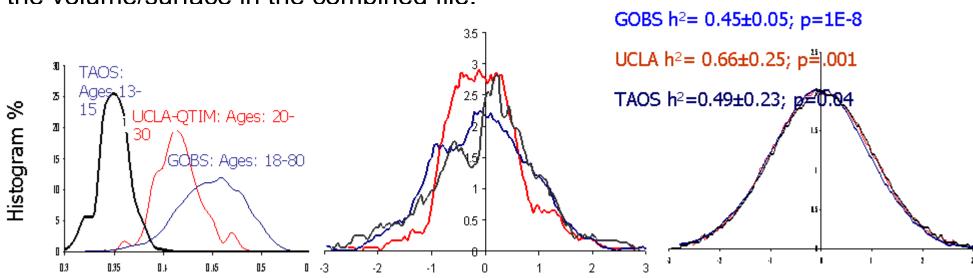


Figure 3. Mega-genetic processing Mega Analysis

h²=0.47±0.05; p=10-16

Meta Analysis SE-Weighted

h²=0.48 ±0.07; p=0.004 Meta Analysis N-Weighted h²=0.44 ±0.03; p=10⁻⁶

Figure 4. Mega- versus Metagenetic analysis

Conclusion

We are developing SOLAR-Eclipse into an imaging genetic software toolkit.

See our workshop at Imaging Genetics Conference http://www.imaginggenetics.uci.edu

Funding provided by NIH-NIBIB EB015611

TEXAS BIOMEDICAL RESEARCH INSTITUTE

